Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 2 - Regression/Support Vector Regression (SVR)/[R] Support Vector Regression (SVR).ipynb
1009 views
Kernel: R

Support Vector Regression

Data Preprocessing

# Importing the dataset dataset = read.csv('Position_Salaries.csv') dataset = dataset[2:3]
dataset

Fiting the SVR to the dataset

# install.packages('e1071') library(e1071) regressor = svm(formula = Salary ~ ., data = dataset, type = 'eps-regression') summary(regressor)
Call: svm(formula = Salary ~ ., data = dataset, type = "eps-regression") Parameters: SVM-Type: eps-regression SVM-Kernel: radial cost: 1 gamma: 1 epsilon: 0.1 Number of Support Vectors: 6

Predicting a new result

predict(regressor, data.frame(Level = 6.5))

Visualising the SVR Model results

# install.packages('ggplot2') library(ggplot2) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = dataset)), colour = 'blue') + ggtitle('Truth or Bluff (SVR Model)') + xlab('Level') + ylab('Salary')
MIME type unknown not supported
Image in a Jupyter notebook

More continuous visualization

# install.packages('ggplot2') library(ggplot2) x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))), colour = 'blue') + ggtitle('Truth or Bluff (SVR Model)') + xlab('Level') + ylab('Salary')
MIME type unknown not supported
Image in a Jupyter notebook

The observation point for CEO is considered as an outlier. This is because the CEO has a much higher Salary then the other Level